平面直角坐标系中,为原点,射线与轴正半轴重合,射线是第一象限角平分线.在上有点列,,在上有点列,,.已知,,.(1)求点的坐标;(2)求的坐标;(3)求面积的最大值,并说明理由.
(本题满分14分)已知数列的首项,且当时, ,数列满足 (Ⅰ)求证:数列是等差数列,并求的通项公式;(Ⅱ) 若(),如果对任意,都有,求实数 的取值范围.
(本题满分14分)如图,在中,已知,,为边上一点.(Ⅰ)若,求的长;(Ⅱ) 若,试求的周长的取值范围.
(本题满分15分)抛物线的方程是,曲线与关于点 对称.(Ⅰ)求曲线的方程; (Ⅱ)过点(8,0)的直线交曲线于M、N两点,问在坐标平面上能否找到某个定点,不论直线如何变化,总有。若找不到,请说明理由;若能找到,写出满足要求的所有的点的坐标.
(本题满分15分)函数,是它的导函数.(Ⅰ)当时,若在区间存在单调递增区间,求的取值范围。(Ⅱ)当时,恒成立,求的最小值.
(本题满分14分)四棱锥的底面是直角梯形,∥,,,,(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正切值.