已知的三个顶点(4,0),(8,10),(0,6).(Ⅰ)求过A点且平行于的直线方程;(Ⅱ)求过点且与点距离相等的直线方程。
(本小题满分12分)如图,三棱柱中,,,平面平面,与相交于点. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值.
(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图), (Ⅰ)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值; (Ⅱ)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).
(本小题满分12分)已知为等差数列,且满足,. (Ⅰ)求数列的通项公式; (Ⅱ)记的前项和为,若成等比数列,求正整数的值.
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点. (Ⅰ)写出曲线的直角坐标方程和直线的普通方程; (Ⅱ)若,求的值.
如图,已知为圆的一条直径,以端点为圆心的圆交直线于两点,交圆于两点,过点作垂直于的直线,交直线于点. (Ⅰ)求证:四点共圆; (Ⅱ)若,求外接圆的半径.