(函数.(1)若是偶函数,求实数的值;(2)当时,求在区间上的值域.
已知点、,若动点满足.(1)求动点的轨迹曲线的方程;(2)在曲线上求一点,使点到直线:的距离最小.
数列的各项均为正数,为其前项和,对于任意的,总有成等差数列.(1)求;(2)求数列的通项公式;(3)设数列的前项和为,且,求证:对任意正整数,总有
在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.(1)请判断与平面的位置关系,并给出证明;(2)证明平面;(3)求四棱锥的体积.
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
(1)求,;(2)若从高校B、C抽取的人中选2人作专题发言,求这2人都来自高校C的概率.
已知函数,(1)求的值; (2)若,且,求.