已知点、,若动点满足.(1)求动点的轨迹曲线的方程;(2)在曲线上求一点,使点到直线:的距离最小.
已知函数 (1)求f(x)的最大值; (2)设△ABC中,角A、B的对边分别为a、b,若B=2A,且, 求角C的大小.
定义数列:,且对任意正整数,有. (1)求数列的通项公式与前项和; (2)问是否存在正整数,使得?若存在,则求出所有的正整数对;若不存在,则加以证明.
如图,是抛物线上的两动点(异于原点),且的角平分线垂直于轴,直线与轴,轴分别相交于. (1) 求实数的值,使得; (2)若中心在原点,焦点在轴上的椭圆经过. 求椭圆焦距的最大值及此时的方程.
已知二次函数的最小值为且关于的不等式的解集为, (1)求函数的解析式; (2)求函数的零点个数.
如图,四棱柱的底面是平行四边形,分别在棱上,且. (1)求证:; (2)若平面,四边形是边长为的正方形,且,,求线段的长, 并证明: