袋中有大小相同的红球和白球共5个,任意摸出一红球的概率是.求:(1)袋中红球、白球各有几个?(2)任意摸出两个球(不放回)均为红球的概率是多少?
已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F, 求证:DE=DF.
(1)已知x=-1,求x2+3x-1的值; (2)已知,求值.
已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数的图象相交于点(2,a). (1)求a的值. (2)求一次函数y=kx+b的表达式. (3)在同一坐标系中,画出这两个函数的图象.
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D. 求证:(1)D是BC的中点; (2)△BEC∽△ADC; (3)若,求⊙O的半径。
在一场2015亚洲杯赛B组第二轮比赛中,中国队凭借吴曦和孙可在下半场的两个进球,提前一轮小组出线。如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员孙可在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的函数表达式. (2)足球第一次落地点距守门员多少米?(取) (3)孙可要抢到足球第二个落地点,他应从第一次落地点再向前跑多少米?(取)