已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:(1)如图1,将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,D.①比较大小:PC______PD. (选择“>”或“<”或“=”填空);②证明①中的结论.(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OA交于点C,且OC=1,另一直角边与直线OB,直线OA分别交于点D,E,当以P,C,E为顶点的三角形与△OCD相似时,试求的长.(提示:请先在备用图中画出相应的图形,再求的长).
在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF. (1)求证:四边形BFDE是矩形; (2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年成平均每个租赁点的公租自行车数量的1.2倍.预计2015年底,全市将租赁点多少个?
如图,在∆ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E. 求证:∠CBE=∠BAD.
解不等式并写出它的所有非负整数解.
已知2a2+3a-6=0,水代数式3a(2a+1)-(2a+1)(2a-1)的值.