已知圆过点,且圆心在直线上。(I)求圆的方程;(II)问是否存在满足以下两个条件的直线: ①斜率为;②直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,说明理由.
已知数列满足下列条件:, (Ⅰ)求的通项公式; (Ⅱ)比较与的大小.
如图,在三棱锥中,,,,。 (Ⅰ)平面平面; (Ⅱ)为上的一点.若直线与平面所成的角为,求的长.
在中,内角所对的边分别为已知, (Ⅰ)求角的取值范围; (Ⅱ)若的面积,为钝角,求角的大小.
已知函数,其中为实常数. (Ⅰ)判断在上的单调性; (Ⅱ)若存在,使不等式成立,求的取值范围.
已知数列满足下列条件: (Ⅰ)求的通项公式; (Ⅱ)设的前项和为,求证:对任意正整数,均有