如图,在Rt△ABC中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若,(1)求反比例函数解析式;(2)求C点坐标.
如图,点A、C、D、B四点共线,且 AC = BD , ∠ A = ∠ B , ∠ ADE = ∠ BCF ,求证: DE = CF .
为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:
(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为 ;
(2)请将图②补充完整;
(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)
先化简,再求值: ( a + b )( a ﹣ b ) + ( a + b ) 2 ,其中 a =﹣ 1 , b = 1 2 .
如图1,矩形ABCD中, AB = 7 cm , AD = 4 cm ,点E为AD上一定点,点F为AD延长线上一点,且 DF = acm ,点P从A点出发,沿AB边向点B以2cm/s的速度运动,连结PE,设点P运动的时间为ts,△PAE的面积为ycm2,当 0 ≤ t ≤ 1 时,△PAE的面积y(cm2)关于时间t(s)的函数图象如图2所示,连结PF,交CD于点H.
(1)t的取值范围为 ,AE= cm;
(2)如图3,将△HDF沿线段DF进行翻折,与CD的延长线交于点M,连结AM,当a为何值时,四边形PAMH为菱形?并求出此时点P的运动时间t;
(3)如图4,当点P出发1s后,AD边上另一动点Q从E点出发,沿ED边向点D以1cm/s的速度运动,如果P,Q两点中的任意一点到达终点后,另一点也停止运动,连结PQ,QH.若 a = 4 3 cm ,请问△PQH能否构成直角三角形?若能,请求出点P的运动时间t;若不能,请说明理由.
如图1,抛物线 y =﹣ x 2 + bx + c 经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.