如图,设是单位圆上一点,一个动点从点出发,沿圆周按逆时针方向匀速旋转,12秒旋转一周.秒时,动点到达点,秒时动点到达点.设,其纵坐标满足.(1)求点的坐标,并求;(2)若,求的取值范围.
已知函数,的最大值是1,最小正周期是,其图像经过点. (1)求的解析式; (2)设、、为△ABC的三个内角,且,,求的值.
已知函数. (1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由; (2)定义,其中,求; (3)在(2)的条件下,令,若不等式对且恒成立,求实数的取值范围.
已知椭圆的左、右焦点分别为、,P为椭圆上任意一点,且的最小值为. (1)求椭圆的方程; (2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.
已知数列满足,. (1)求数列的通项公式; (2)令,数列{bn}的前n项和为Tn,试比较Tn与的大小,并予以证明.
如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:平面; (2)求证:平面平面; (3)求二面角的余弦值.