在四棱锥P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC与BD的交点M恰好是AC中点,N为线段PB的中点,G在线段BM上,且(Ⅰ)求证:AB⊥PD;(Ⅱ)求证:GN//平面PCD.
已知函数(Ⅰ)求函数的最小正周期;(Ⅱ)在中,为内角的对边,若,求的最大面积。
已知曲线的极坐标方程为,直线的参数方程是: .(Ⅰ)求曲线的直角坐标方程,直线的普通方程;(Ⅱ)求曲线与直线交与两点,求长.
如图,已知直三棱柱中,,,分别是棱,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:平面;
已知数列的前项和为,且是与2的等差中项 ;数列中,,点在直线上。(Ⅰ) 求数列的通项公式和;(Ⅱ)设,求数列的前n项和
如图,已知椭圆的上顶点为,右焦点为,直线与圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)若不过点的动直线与椭圆相交于、两点,且求证:直线过定点,并求出该定点的坐标