如图,已知平行六面体ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD上的射影是O。(Ⅰ)求证:平面O1DC⊥平面ABCD;(Ⅱ)若∠A1AB=60°,求平面BAA1与平面CAA1的夹角的余弦值。
(本小题满分13分)已知数列中,.(Ⅰ)计算的值;(Ⅱ)根据计算结果猜想{an}的通项公式,并用数学归纳法加以证明.
(本大题满分10分)选修4-5:不等式选讲设函数(Ⅰ)解不等式;(Ⅱ)当,时,证明:.
(本小题满分10分) 选修4-4:极坐标系与参数方程在极坐标系中曲线的极坐标方程为,点.以极点为原点,以极轴为轴正半轴建立直角坐标系.斜率为的直线过点,且与曲线交于两点.(Ⅰ)求出曲线的直角坐标方程和直线的参数方程;(Ⅱ)求点到两点的距离之积.
(本小题满分10分)选修4-1:平面几何证明选讲如图,在中,,以为直径的⊙交于,过点作⊙的切线交于,交⊙于点.(Ⅰ)证明:是的中点; (Ⅱ)证明:.
已知函数 . (Ⅰ)若,求函数的极值; (Ⅱ)若在区间内有唯一的零点,求的取值范围.