已知函数,设 (Ⅰ)求函数的单调区间 (Ⅱ)若以函数图象上任意一点为切点的切线的斜率恒成立,求实数的最小值 (Ⅲ)是否存在实数,使得函数的图象与函数的图象恰有四个不同交点?若存在,求出实数的取值范围;若不存在,说明理由。
(本题10分)已知函数(1)判断函数的单调性,并证明;(2)求函数的最大值和最小值.
(本题10分)设,(1)在下列直角坐标系中画出的图象;(2)若,求值.
(本题10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.(1)分别求A∩B,(∁RB)∪A;(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值范围构成的集合.
首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足an+1bn- anbn+1=2bn+1bn.(1)令cn=,求证:数列{cn}是等差数列;(2)若bn=3n-1,求数列{an}的前n项和Sn.
等差数列{an}的公差d为整数,已知a1=10,且a4≥0,a5≤0,(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.