已知椭圆的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为的正方形(记为)(Ⅰ)求椭圆的方程(Ⅱ)设点是直线与轴的交点,过点的直线与椭圆相交于两点,当线段的中点落在正方形内(包括边界)时,求直线斜率的取值范围
如图等腰梯形ABCD的两底分别为AB=10,CD=4,两腰AD=CB=5,动点P由B点沿折线BCDA向A运动,设P点所经过的路程为x,三角形ABP的面积为S. (1)求函数S=f(x)的解析式; (2)试确定点P的位置,使△ABP的面积S最大.
已知为奇函数, (1)求实数a的值。 (2)若在上恒成立,求的取值范围。
设命题p:;命题q: ,若是的必要不充分条件, (1)p是q的什么条件? (2)求实数a的取值范围.
已知二次函数满足条件,及. (1)求的解析式; (2)求在上的最值.
高校招生是根据考生所填报的志愿,从考试成绩所达到的最高第一志愿开始,按顺序分批录取,若前一志愿不能录取,则依次给下一个志愿(同批或下一批)录取.某考生填报了三批共6个不同志愿(每批2个),并对各志愿的单独录取以及能考上各批分数线的概率进行预测,结果如“表一”所示(表中的数据为相应的概率,a、b分别为第一、第二志愿). (Ⅰ)求该考生能被第2批b志愿录取的概率; (Ⅱ)求该考生能被录取的概率; (Ⅲ)如果已知该考生高考成绩已达到第2批分数线却未能达到第1批分数线,请计算其最有可能在哪个志愿被录取? (以上结果均保留二个有效数字)