已知椭圆的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为的正方形(记为)(Ⅰ)求椭圆的方程(Ⅱ)设点是直线与轴的交点,过点的直线与椭圆相交于两点,当线段的中点落在正方形内(包括边界)时,求直线斜率的取值范围
(本小题满分12分) 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。 (1)求的值及的表达式。 (2)隔热层修建多厚时,总费用达到最小,并求最小值。
(本小题满分12分) 在△ABC中,内角A、B、C对边长分别是a,b,c,已知c=2,C=(1)若△ABC的面积等于;(2)若的面积。
(本小题满分12分) 设{an}是等差数列,{bn}是各项为正项的等比数列,且a1=b1="1," a3+b5="21," a5+b3=13. (1)求{an}, {bn}的通项公式; (2)求数列{}的前n项和Sn;
(本小题满分12分) 已知向量=(sin1),,. (1)若,求; (2)求|的最大值。
选修4-5:不等式选讲 设函数. (1)解不等式; (2)求函数的最小值.