已知椭圆的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为的正方形(记为)(Ⅰ)求椭圆的方程(Ⅱ)设点是直线与轴的交点,过点的直线与椭圆相交于两点,当线段的中点落在正方形内(包括边界)时,求直线斜率的取值范围
从某年级学生中,随机抽取50人,其体重(单位:千克)的频数分布表如下:
(1)根据频数分布表计算体重在的频率;(2)用分层抽样的方法从这50人中抽取10人,其中体重在中共有几人?(3)在(2)中抽出的体重在的人中,任取2人,求体重在中各有1人的概率.
已知向量向量记(1)求函数的单调递增区间;(2)若,求函数的值域.
已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点.(1)求椭圆的方程;(2)求 面积的最大值,并求此时直线的方程.
已知函数.(1)设函数求的极值.(2)证明:在上为增函数。
如图,在四棱锥中,底面是边长为2的正方形,侧面底面,且为等腰直角三角形,,、分别为、的中点.(1)求证://平面 ;(2)若线段中点为,求二面角的余弦值.