给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
(本小题14分)、商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问:(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?
(本小题14分)已知函数,且(1)求的值;(2)判断函数在上是增函数还是减函数?并证明.
(本小题14分)已知函数是定义在R上的偶函数,且当≤0时,. (1)求出的解析式;(2)现已画出函数在y轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间和值域。
(本小题12分)已知集合,求(1) (2)
计算下列各式的值(每小题6分,共12分)(1); (2)