已知点,,动点G满足.(Ⅰ)求动点G的轨迹的方程;(Ⅱ)已知过点且与轴不垂直的直线l交(Ⅰ)中的轨迹于P,Q两点.在线段上是否存在点,使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.
如图,四边形ABCD是一块边长为4的正方形地域,地域内有一条河流MD,其经过的路线是以AB中点M为顶点,且开口向右的抛物线(河流宽度不计)。某公司准备建一大型游乐园PQCN,问如何施工,才能使游乐园面积最大?并求出最大的面积。
在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列。 ⑴求点的坐标; ⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与抛物线相切于的直线的斜率为,求:。 ⑶设,等差数列的任一项,其中是中的最大数,,求的通项公式。
已知数列,设Sn是数列的前n项和,并且满足a1=1,对任意正整数n,(1)令证明是等比数列,并求的通项公式;(2)令的前n项和,求
若、为双曲线的左右焦点,O为坐标原点,P在双曲线左支,在右准线上,且满足,(1)求双曲线离心率;(2)若双曲线过点N(2,),它的虚轴端点为,(在轴正半轴上)过作直线与双曲线交于A、B两点,当⊥时,求直线的方程。
长度为的线段AB的两个端点A、B在抛物线上运动,求AB中点到轴的最短距离。