解方程:x2-4x+1=0
如图,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧.(1)取BC中点D,问OD+DA的长度是否发生改变,若会,说明理由;若不会,求出OD+DA长度;(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;(3)填空:当OA最长时A的坐标是( , ),直线OA的解析式是 .
例:说明代数式的几何意义,并求它的最小值.解:,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=,即原式的最小值为。根据以上阅读材料,解答下列问题:(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标)(2)求代数式的最小值
已知一次函数的图象经过点,且与函数的图象相交于点.(1)求的值;(2)若函数的图象与轴的交点是B,函数的图象与轴的交点是C,求四边形的面积(其中O为坐标原点).
(1)如图1,△ABC的顶点坐标分别为A(-1,0),B(3,0),C(0,2).若将点A向右平移4个单位,则A、B两点重合;若将点A向右平移1个单位,再向上平移2个单位,则A、C两点重合.试解答下列问题:①填空:将点C向下平移 个单位,再向右平移 个单位与点B重合;②将点B向右平移1个单位,再向上平移2个单位得点D,请你在图中标出点D的位置,并连接BD、CD,请你说明四边形ABDC是平行四边形;(2)如图2,△ABC的顶点坐标分别为A(-2,-1),B(2,-3),C(1,1).请问:以△ABC的两条边为边,第三边为对角线的平行四边形有几个?并直接写出第四个顶点的坐标.
已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=40°,求∠DCB的度数;(2)若AB=10,CD=6,求BD的长.