如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图像由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为 cm/s,a﹦ cm2;(2)若BC﹦3cm,①写出当t>3时S关于t的函数关系式;②在图(2)中画出①中相应的函数图像.
如图,已知某市一座电视塔高AB为600米.张明在点C处测得电视塔塔顶B的仰角∠ACB=40°。 (1)求∠B的度数; (2)求AC的长(精确到1米).
如图,在平面直角坐标系中,△ABC与△A′B′C′关于点P位似,且顶点都在格点上. (1)在图上找出位似中心P的位置,并直接写出点P的坐标是; (2)写出△ABC与△A′B′C′的面积比.
解方程:.
在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD. (1)求b的值和点D的坐标; (2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标; (3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.
某服装商店用9600元购进了某种时装若干套,第一个月每套按进价增加30%作为售价,售出了100套,第二个月换季降价处理,每套比进价低10元销售,售完了余下的时装,结果在买卖这种服装的过程中共盈利2200元,求每套时装的进价.