已知点和点在抛物线上. (1)求的值及点的坐标;(2)点在轴上,且满足△是以为直角边的直角三角形,求点的坐标;(3)平移抛物线,记平移后点A的对应点为,点B的对应点为. 点M(2,0)在x轴上,当抛物线向右平移到某个位置时,最短,求此时抛物线的函数解析式.
如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)填空:∠APC= 度,∠BPC= 度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积.
如图,AB是⊙O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.
如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E.(1)请你写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE.
(10分 )如图,已知抛物线与轴交于A(﹣1,0),B(3,0)两点,与轴交于点C(0,3).(1)求抛物线的解析式;(2)若为对称轴上的点,且的面积是4,求点的坐标;(3)设抛物线的顶点为D,在第一象限的抛物线上是否存在点,使得是等腰三角形?若存在,求出符合条件的点的坐标;若不存在,请说明理由.
某产品每件的成本10元,试销阶段每件产品的销售价(元)与产品的日销售量(件)之间的关系如下表:
且日销售量(件)是销售价(元)的一次函数.(1)求出日销售量(件)与销售价(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时最大销售利润是多少?