已知:抛物线与x轴的两个交点分别为A(1,0)和B(3,0),与y轴交于点C.(1)求此二次函数的解析式;(2)写出点C的坐标________,顶点D的坐标为__________;(3)将直线CD沿y轴向下平移3个单位长度,求平移后直线m的解析式;(4)在直线m上是否存在一点E,使得以点E、A、B、C为顶点的四边形是梯形,如果存在,请直接写出所有满足条件的E点的坐标__________________________________(不必写出过程).
已知二次函数的图象经过点(1,0)和(-5,0)两点,顶点纵坐标为,求这个二次函数的解析式。
如图,过□ABCD中的三个顶点A、B、D作⊙O,且圆心O在□ABCD的外部,AB=8,OD⊥AB于点E,⊙O的半径为5,求□ABCD的面积.
已知:如图,在△ABC中,∠A=30°, tanB=,AC=18, 求BC、AB的长.
已知:如图,在⊙O中,弦交于点,. 求证:.
如图,抛物线,与轴交于点,且.(1)求抛物线的解析式;(2)探究坐标轴上是否存在点,使得以点为顶点的三角形为直角三角形? 若存在,求出点坐标,若不存在,请说明理由;(3)直线交轴于点,为抛物线顶点.若,的值.