已知:抛物线与x轴的两个交点分别为A(1,0)和B(3,0),与y轴交于点C.(1)求此二次函数的解析式;(2)写出点C的坐标________,顶点D的坐标为__________;(3)将直线CD沿y轴向下平移3个单位长度,求平移后直线m的解析式;(4)在直线m上是否存在一点E,使得以点E、A、B、C为顶点的四边形是梯形,如果存在,请直接写出所有满足条件的E点的坐标__________________________________(不必写出过程).
如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置. (1)请你在图中画出小亮在AB处的影子; (2)当小亮离开灯杆的距离OB=4.2cm时,身高(AB)为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离OD=6m时,小亮的影长是多少m?
如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上). (1)求教学楼AB的高度; (2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离.(结果保留整数) (参考数据:sin22º≈,cos22º≈,tan22º≈)
关于x的一元二次方程有两个实数根、. (1)求p的取值范围; (2)若,求p的值.
先化简,再求值:,其中x是一元二次方程的根.
(每题5分,共10分)解方程: (1) (2)(用配方法)