如图,一转盘被等分成三个扇形,上面分别标有-1,1,2,指针位置固定,转动转盘后任其自由停止后,某个扇形会恰好停在指针所指的位置,得到这个扇形上相应的数.若指针恰好指在等分线上,则需重新转动转盘.(1)若小静转动转盘一次,则她得到负数的概率为 ;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.请用列表法(或画树状图)求出两人“不谋而合”的概率.
如图,中,AB=AC=,,BD平分. (1)图中有个等腰三角形; (2)求BC的长(用含的代数式表示).
如图,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块试验田;要使试验田的总面积为570.问道路应为多少宽?
已知关于的方程. (1)当时,该方程的根是; (2)当时,该方程有两个不相等的实数根吗?并说明理由.
解方程.
解方程:.