设二次函数,对任意实数,有恒成立;数列满足.(1)求函数的解析式和值域;(2)证明:当时,数列在该区间上是递增数列;(3)已知,是否存在非零整数,使得对任意,都有 恒成立,若存在,求之;若不存在,说明理由.
△ABC中 (1)求△ABC的面积; (2)若b+c=6,求a的值。
选修4-5:不等式选讲 已知,求 的最大值和最小值.
选修4—4:坐标系与参数方程 已知直线的极坐标方程为, 圆的参数方程为. (1)将直线的极坐标方程化为直角坐标方程; (2)求圆上的点到直线的距离的最小值.
选修4-1:几何证明选讲 如图,已知是⊙的切线, 为切点,是⊙O的割线,与⊙交于,两点,圆心在的内部,点是的中点. (1)求证:,,,四点共圆; (2)求的大小.
设函数是定义域为R上的奇函数. (1)若的解集; (2)若上的最小值为, 求的值.