设函数.其中(1)求的最小正周期;(2)当时,求实数的值,使函数的值域恰为并求此时在上的对称中心.
已知定义域为R的函数是奇函数。(1)求的值;(2)用定义证明在上为减函数;(3)若对于任意,不等式恒成立,求的取值范围。
已知函数在点处取得极值。(1)求的值;(2)若有极大值28,求在上的最小值。
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元. 根据市场调查,销售商一次订购量不会超过500件。(1)设一次订购量为件,服装的实际出厂单价为元,写出函数的表达式;(2)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价-成本)
已知函数的的定义域为.当时,求函数的最值及相应的的值。
设集合,。 (1)当时,求的非空真子集的个数;(2)若,求的取值范围;(3)若,求的取值范围。