解方程组:(1)(2)
(1)(分解因式) ; (2).
先化简,再求值:,其中.
如图,点B、F、C、E在同一直线上,∠A=∠D,BF=CE,AC∥DF.求证:△ABC≌△DEF
如图,抛物线与轴相交于点(﹣1,0)、(3,0),与轴相交于点,点为线段上的动点(不与、重合),过点垂直于轴的直线与抛物线及线段分别交于点、,点在轴正半轴上,=2,连接、.(1)求抛物线的解析式;(2)当四边形是平行四边形时,求点的坐标;(3)过点的直线将(2)中的平行四边形分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)
为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?