在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
如图,为⊙的直径,为⊙的切线,交⊙于点, 为上一点,.(1)求证:;(2)若,,求的长
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋高楼底部的俯角为,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:)
先化简,再求值:(1-)÷,其中=sin60°
如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
如图,矩形ABCD的边AB="6" cm,BC="8" cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直角,设BP="x" cm,CQ="y" cm,试以x为自变量,写出y与x的函数关系式.并求为何值时,有最大值或最小值?