如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长。小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
一个角的补角是这个角的余角的3倍,求这个角的度数.
如图,已知AB∥CD,∠1=50°,BD平分∠ADC,求∠A的度数.
如图,直线,,,相交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.
如图,离河岸不远处有一个村庄,村民到岸边取水,怎样走最近?这什么?如果要到码头乘船,怎样走最近?为什么?
如图1,在平面直角坐标系中,点A、C分别在轴、轴上,四边形OABC是面积为4的正方形,函数(>0)的图象经过点B. (1)=; (2)如图2,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′和正方形MA′BC.设线段MC′、NA′分别与函数(>0)的图象交于点E、F,则点E、F的坐标分别为:E (,),F (,); (3)如图3,面积为4的正方形ABCD的顶点A、B分别在轴、轴上,顶点C、D在反比例函数(>0)的图像上,试求OA、OB的长。(请写出必要的解题过程)