在正方形网格中建立如图所示的平面直角坐标系xoy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1并写出点A的对应点A1的坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)将△ABC绕点C逆时针旋转90°,画出旋转后的△A3B3C.
因式分解(1) 4a(x-y)-2b(y-x); (2)(3)
计算(1) (2)(3)(x+1)2﹣(x+2)(x-2)
某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A,B两种长方体形状的无盖纸盒.现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子? (1)根据题意,甲和乙两同学分别列出的方程组如下: 甲:乙: 根据两位同学所列的方程组,请你分别指出未知数x,y表示的意义: 甲:x表示_________,y表示_________; 乙:x表示_________,y表示_________; (2)求出做成的A型盒子和B型盒子分别有多少个(写出完整的解答过程)?
如图,∠1=∠ABC,∠2=∠3,FG⊥AC于F,判断BE与AC有怎样的位置关系,并说明理由。
如图,已知AB∥CD,∠AEC=90°,那么∠A与∠C的度数和为多少度?为什么? 解:∠A与∠C的度数和为 _________ . 理由:过点E作EF∥AB, ∵EF∥AB, ∴∠A+∠AEF=180°( _________ ). ∵AB∥CD( _________ ),EF∥AB, ∴EF∥CD( _________ ) ∴ _________ (两直线平行,同旁内角互补) ∴∠A+∠AEF+∠CEF+∠C= _________ °(等式的性质) 即∠A+∠AEC+∠C= _________ ° ∵∠AEC=90°(已知) ∴∠A+∠C= _________ °(等式的性质).