(本小题满分12分)已知椭圆的离心率为,在椭圆C上,A,B为椭圆C的左、右顶点.(1)求椭圆C的方程:(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.
已知函数的定义域为.(1)求函数在上的最小值;(2)对,不等式恒成立,求实数的取值范围.
某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(1)恰有2人申请片区房源的概率;(2)申请的房源所在片区的个数的分布列和期望.
在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.(1)若D是AB中点,求证:AC1∥平面B1CD;(2)当时,求二面角的余弦值.
已知数列的前n项和为,(1)证明:数列是等差数列,并求;(2)设,求证:
已知函数.(1)求函数的最大值,并写出取最大值时的取值集合;(2)已知中,角的对边分别为若求实数的最小值.