已知函数 .(1)求函数的单调递减区间及最小正周期;(2)设锐角△ABC的三内角A,B,C的对边分别是若,,求
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1) 证明:BD⊥平面PAC;(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.
已知等差数列满足:,的前n项和为.(1)求及;(2)已知数列的第n项为,若成等差数列,且,设数列的前项和.求数列的前项和.
设有关于x的一元二次方程.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
设.(1)若时,单调递增,求的取值范围;(2)讨论方程的实数根的个数.
已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.(1)求椭圆的标准方程;(2)若斜率为的直线交椭圆与、两点,且、、成等差数列,点M(1,1),求的最大值.