已知数列的前项和,函数对有,数列满足.(1)分别求数列、的通项公式;(2)若数列满足,是数列的前项和,若存在正实数,使不等式对于一切的恒成立,求的取值范围.
已知等差数列的公差,,且成等比数列.(1)求通项公式; (2)令,,求数列的前项的和.
已知函数.(1)求的单调递增区间;(2)当时,求的值域.
已知函数,(其中是自然对数的底数)。(1)若,求函数在上的最大值;(2)若,关于的方程有且仅有一个根,求实数的取值范围;(3)若对任意的,,不等式都成立,求实数的取值范围。
某市近郊有一块大约500米×500米的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个总面积为3000平方米矩形场地,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别用表示和的函数关系式,并给出定义域;(2)怎样设计能使取得最大值,并求出最大值.
四棱锥中,底面是边长为8的菱形,,若,平面⊥平面,、分别为、的中点。(1)求证:;(2)求证:⊥; (3)求三棱锥的体积.