已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=(1)若f(-1)=0,且函数f(x) ≥0的对任意x属于一切实数成立,求F(x)的表达式;(2)在 (1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (1)求椭圆G的方程;(2)求的面积.
求两变量间的回归方程.
求出Y对X的回归直线方程,并说明拟合效果的好坏。(其中)
已知x,y,z是互不相等的正数,且x+y+z=1,求证:.
已知函数 (1)若函数在上为增函数,求正实数的取值范围; (2)当时,求函数在上的最值; 当时,对大于1的任意正整数,试比较与的大小关系
函数函数的图像如图所示。 (Ⅰ)求的值; (Ⅱ)求函数的单调区间。