运货卡车以每小时x千米的匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油()升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
设{an}是公比为正数的等比数列,a1=2,a3=a2+4.(1)求{an}的通项公式.(2)设{bn}是首项为1,公差为2的等差数列,求{an+bn}的前n项和Sn.
已知向量a=(,cosωx),b=(sinωx,1),函数f(x)=a·b,且最小正周期为4π.(1)求ω的值.(2)设α,β∈,f=,f=-,求sin(α+β)的值.(3)若x∈[-π,π],求函数f(x)的值域.
已知平面向量a=(,-1),b=.(1)若x=(t+2)a+(t2-t-5)b,y=-ka+4b(t,k∈R),且x⊥y,求出k关于t的关系式k=f(t).(2)求函数k=f(t)在t∈(-2,2)上的最小值.
设a=(cosα,sinα),b=(cosβ,sinβ),若a-b=,θ为a与b的夹角.(1)求θ的值.(2)若f(x)=2sin(θ-x)cos(θ-x)+2sin2(θ-x),求f(x)的单调递增区间.
已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.(1)求点C,D对应的复数.(2)求平行四边形ABCD的面积.