已知函数f(x)= (1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.
已知椭圆C过点A(1,),两个焦点为(-1,0)(1,0)。 求椭圆C的方程; E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修,旧墙足够长),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为xm,修建此矩形场地围墙的总费用为y(单位:元)。 (Ⅰ)将y表示为x的函数: (Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
设为数列的前项和,,,其中是常数. (I)求及; (II)若对于任意的,,,成等比数列,求的值.
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 (Ⅰ)确定角C的大小: (Ⅱ)若c=,且△ABC的面积为,求a+b的值。
(1)求过点P(-2, -4)的抛物线的标准方程。 (2)已知双曲线C与双曲线共渐近线,且过点, 求此双曲线C的方程;