某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:(Ⅰ)由表中数据直观分析,节能意识强弱是否与人的年龄有关?(Ⅱ)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(Ⅲ)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.
设函数定义在上,对于任意实数,恒有,且当时, (1)求证:,且当时, (2)求在上的单调性. (3)设集合,,且, 求实数的取值范围.
某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元;当用水超过4吨时,超过部分每吨3.00元。某月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为吨和吨。 (1)求关于的函数; (2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费。
已知二次函数满足,且该函数的图像与轴交于点,在轴上截得的线段长为。 (1)确定该二次函数的解析式; (2)当时,求值域。
已知集合. (1)若,全集,求; (2)若,求实数的取值范围.
(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。 (1)求证:AC⊥BD; (2)若CA = CB,求证:平面BCD⊥平面ABD (3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出的值