对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1) 判断函数是否为“()型函数”,并说明理由;(2) 若函数是“()型函数”,求出满足条件的一组实数对;(3)已知函数是“()型函数”,对应的实数对为(1,4).当 时,,若当时,都有,试求的取值范围.
已知函数, (1)若,求的单调区间; (2)当时,求证:.
已知椭圆的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6。 (1)求椭圆C的方程; (2)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线的方程。
已知函数,其图象在点(1,)处的切线方程为 (1)求a,b的值; (2)求函数的单调区间,并求出在区间[—2,4]上的最大值。
某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分): 甲班
乙班
(1)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果; (2)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分; (3)完成下面2×2列联表,你认为在犯错误的概率不超过0.025的前提下, “这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由。
附:
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上. (1)求抛物线C的标准方程; (2)设直线l是抛物线的准线,求证:以AB为直径的圆与准线l相切.