右图为一组合体,其底面为正方形,平面,,且(Ⅰ)求证:平面;(Ⅱ)求四棱锥的体积;(Ⅲ)求该组合体的表面积.
某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给地10台,地8台.已知从甲地调动1台至地,地的运费分别为400元和800元,从乙地调运1台至地,地的费用分别为300元和500元.(1) 设从乙地调运台至地,求总费用关于台数的函数解析式;(2) 若总运费不超过9000元,问共有几种调运方案;(3) 求出总运费最低的调运方案及最低的费用.
某化工厂生产一种溶液,按市场要求,杂质含量不超过,若初时含杂质,每过滤一次可使杂质含量减少,问至少应过滤几次才能使产品达到市场要求?(已知)
某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产一台,需要增加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台.销售的收入函数为(万元),其中是产品售出的数量(单位:百台).(1) 把利润表示为年产量的函数;(2) 年产量是多少时,工厂所得利润最大?(3) 年产量是多少时,工厂才不亏本?
某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为元/千克,政府补贴为元/千克.根据市场调查,当时,淡水鱼的市场日供产量千克与市场日需求量千克近似地满足关系:,,,,.当时的市场价格称为市场平衡价格.(1) 将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;(2) 为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?
已知,分别是关于的方程的两个根,且,求实数的取值范围.