如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)、D(2, n)三点.(1)求抛物线的解析式及点D坐标;(2)点M是抛物线对称轴上一动点,求使BM-AM的值最大时的点M的坐标;(3)如图2,将射线BA沿BO翻折,交y轴于点C,交抛物线于点N,求点N的坐标;(4)在(3)的条件下,连结ON,OD,如图2,请求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
如图,为⊙的直径,与⊙相切于点,与⊙相切于点,点为延长线上一点,且CE=CB.(1)求证:为⊙的切线;(2)若,求线段BC的长.
小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?
在一个口袋中装有4个完成相同的小球,把它们分别标号1、2、3、4,小明从中随机地摸出一个球.(1)直接写出小明摸出的球标号为4的概率;(2)若小明摸到的球不放回,记小明摸出球的标号为,然后由小强再随机摸出一个球记为.小明和小强在此基础上共同协商一个游戏规则:当>时,小明获胜,否则小强获胜.请问他们制定的游戏规则公平吗?请用树状图或列表法说明理由.
如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,(2)写出A1,C1的坐标.(3)求点A旋转到A1所经过的路线长.
已知二次函数.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.