已知函数(其中为常数).(I)当时,求函数的最值;(Ⅱ)讨论函数的单调性.
已知函数f(x)=xk+b(其中k,b∈R且k,b为常数)的图象经过A(4,2)、B(16,4)两点.(1)求f(x)的解析式;(2)如果函数g(x)与f(x)的图象关于直线y=x对称,解关于x的不等式:g(x)+g(x-2)>2a(x-2)+4.
若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.
已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求f(x)的解析式;(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.
设集合A={x|x2<4},B={x|1<}.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.
已知数列{an}的前n项和Sn=-an-n-1+2(n∈N*),数列{bn}满足bn=2nan.(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.(2)设数列的前n项和为Tn,证明:n∈N*且n≥3时,Tn>.(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn.