设非负等差数列的公差,记为数列的前n项和,证明: 1)若,且,则; 2)若则。
某地现有耕地100000亩,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%。如果人口年增加率为1%,那么耕地平均每年至多只能减少多少亩(精确到1亩)?
是否存在等差数列,使对任意都成立?若存在,求出数列的通项公式;若不存在,请说明理由.
已知的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.
若展开式中第二、三、四项的二项式系数成等差数列. 求n的值; (2)此展开式中是否有常数项,为什么?
三个女生和五个男生排成一排. (1)如果女生必须全排在一起,有多少种不同的排法? (2)如果女生必须全分开,有多少种不同的排法? (3)如果两端都不能排女生,有多少种不同的排法? (4)如果两端不能都排女生,有多少种不同的排法? (5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?