将3k(k为正整数)个石子分成五堆。如果通过每次从其中3堆中各取走一个石子,而最后取完,则称这样的分法是“和谐的”。试给出和谐分法的充分必要条件,并加以证明。
(本题10分)已知. (1)若,求函数的值域; (2)求证:函数在区间上单调递增.
(本题共10分)(1)计算: (2)解关于的不等式:
(本小题满分为10分) 已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点M(1,),过点P(2,1)的直线与椭圆C相交于不同的两点A,B. (Ⅰ)求椭圆C的方程; (Ⅱ)是否存在直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分为10分) 设等差数列的公差为,前项和为,等比数列的公比为.已知,,,. (Ⅰ)求数列,的通项公式; (Ⅱ)当时,记,求数列的前项和.
(本小题满分为10分) 已知点P(-2,-3)和以点Q为圆心的圆。 (Ⅰ)求以PQ为直径的圆的方程; (Ⅱ)设⊙与⊙Q相交于点A、B,求直线AB的一般式方程。 (Ⅲ)设直线:与圆Q相交于点C、D,求截得的弦CD的长度最短时的值。