关于的不等式.(Ⅰ)当时,解此不等式;(Ⅱ)设函数,当为何值时,恒成立?
(本小题满分13分)已知:向量,向量,,(1)若,求:的值; (2)求:的最大值
(本小题满分13分)已知:定义在R上的函数,其中a为常数。(1)若,求:的图象在点处的切线方程;(2)若是函数的一个极值点,求:实数a的值;(3)若函数在区间上是增函数,求:实数a的取值范围
(本小题满分13分)已知:若是公差不为0的等差数列的前项和,且、、成等比数列。 (1)求:数列、、的公比; (2)若,求:数列的通项公式
(本小题满分13分)已知:函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求:的解析式; (2)当,求:函数的值域
(本小题满分14分) 已知:函数(),. (1)若函数图象上的点到直线距离的最小值为,求的值; (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围; (3)对于函数与定义域上的任意实数,若存在常数,使得不等式和都成立,则称直线为函数与的“分界线”。设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.