已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(Ⅰ)求异面直线CC1和AB的距离;(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
已知数列的前项和为,,且(为正整数). (1)求数列的通项公式; (2)记.若对任意正整数,恒成立,求实数的最大值.
设点在椭圆的长轴上,点是椭圆上任意一点. 当的模最小时,点恰好落在椭圆的右顶点,求实数的取值范围.
若动直线与函数和的图像分别交于两点,求的最大值.
已知中,若,求证:
把一块钢板冲成上面是半圆形,下面是矩形的零件,其周长是P,怎样设计才能使冲成的零件面积最大?并求出它的最大面积。