设函数.(1)研究函数的极值点;(2)当时,若对任意的,恒有,求的取值范围;(3)证明:.
(本小题满分12分) 已知,其中是自然对数的底数, (1)讨论时,的单调性。 (2)求证:在(1)条件下, (3)是否存在实数,使得最小值是3,如果存在,求出的值;如果不存在,说明理由。
(本小题满分12分) 定义在上的奇函数,已知当时, (1)写出在上的解析式 (2)求在上的最大值 (3)若是上的增函数,求实数的范围。
(本小题满分12分) 定义在上的函数,对于任意的实数,恒有,且当时,。 (1)求及的值域。 (2)判断在上的单调性,并证明。 (3)设,,,求的范围。
(本小题满分12分) 解关于的不等式(其中是常数,且)
(本小题满分10分) 定义在上的函数满足,且当时,, (1)求在上的表达式; (2)若,且,求实数的取值范围。