数列{an}中,a1=1,当时,其前n项和满足.(Ⅰ)求Sn的表达式;(Ⅱ)设,数列{bn}的前n项和为,求.
(本大题满分13分)设函数是定义域在上的单调函数,且对于任意正数有,已知.(1)求的值;(2)一个各项均为正数的数列满足:,其中是数列的前n项的和,求数列的通项公式;(3)在(2)的条件下,是否存在正数,使 对一切成立?若存在,求出M的取值范围;若不存在,说明理由.
(满分13分)已知椭圆中心在原点,焦点在x轴上,离心率,点分别为椭圆的左、右焦点,过右焦点且垂直于长轴的弦长为⑴ 求椭圆的标准方程;⑵ 过椭圆的左焦点作直线,交椭圆于两点,若,求直线的倾斜角。
(本小题满分13分)设直线x=1是函数f(x)的图像的一条对称轴,对于任意,f(x+2)="--" f(x),当.(1)证明:f(x)在R上是奇函数;(2)当时,求f(x)的解析式。
(本小题满分12分)某种商品的生产成本为50元/件,出厂价为60元/件.厂家为了鼓励销售商多订购,决定当一次性订购超过100件时,每多订购一件,所订购全部商品的出厂价就降低0.01元.根据市场调查,销售商一次订购不会超过600件.(1)设销售商一次订购x件商品时的出厂价为f(x),请写出f(x)的表达式;(2)当销售商一次订购多少件商品时,厂家获得的利润最大?最大利润是多少?
(本小题满分12分)已知命题P:指数函数f(x)=在R上单调递减; 命题q:关于x的方程的两个实根均大于0,若为真,为假,求实数a的取值范围。