已知在区间上是增函数.(1)求实数的值组成的集合;(2)设关于的方程的两个非零实根为、.试问:是否存在实数,使得不等式对任意及 恒成立?若存在,求的取值范围;若不存在,请说明理由.
(本小题满分14分) 桌面上有三颗均匀的骰子(6个面上分别标有数字1,2,3,4,5,6)。重复下面的操作,直到桌面上没有骰子:将骰子全部抛掷,然后去掉那些朝上点数为奇数的骰子。记操作三次之内(含三次)去掉的骰子的颗数为X. (1)求; (2)求X的分布列及期望.
(本小题满分14分) 已知的三个内角、、所对的边分别为,向量,且. (1)求角A的大小; (2)若,试判断取得最大值时形状.
(本小题满分12分) 已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1)。 (Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)> ; (Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围。
(本小题满分12分) 设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点。 (Ⅰ)求椭圆C1的方程; (Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值。
(本小题满分12分) 已知数列满足,,设数列的前n项和为,令。 (Ⅰ)求数列的通项公式;(Ⅱ)求证:。