已知是二次函数,不等式的解集是且在区间上的最大值是12.(Ⅰ)求的解析式;(Ⅱ)是否存在自然数使得方程在区间内有且只有两个不等的实数根?若存在,求出的集合;若不存在,说明理由.
甲与乙两人掷硬币,甲用一枚硬币掷3次,记下国徽面朝上的次数为m;乙用一枚硬币掷2次,记下国徽面朝上的次数为n.(1)算国徽面朝上不同次数的概率并填入下表:(2)现规定:若m>n,则甲胜;若n≥m,则乙胜.你认为这种规定合理吗?为什么?
某校高三一次月考之后,为了了解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成下面频率分布表:(1)若每组数据用该区间的中点值(例如区间[90,100 )的中点值是95)作为代表,试估计该校高三学生本次月考的平均分;(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在区间[110,130 )中的学生数为ξ,求:①在三次抽取过程中至少两次连续抽中成绩在区间[110,130 )中的概率;②ξ的分布列和数学期望.
在袋子中装有10个大小相同的小球,其中黑球有3个,白球有n(2≤n≤5,且n≠3)个,其余的球为红球.(Ⅰ)若n=5,从袋中任取1个球,记下颜色后放回,连续取三次,求三次取出的球中恰有2个红球的概率;(Ⅱ)从袋里任意取出2个球,如果这两个球的颜色相同的概率是,求红球的个数;(Ⅲ)在(Ⅱ)的条件下,从袋里任意取出2个球.若取出1个白球记1分,取出1个黑球记2分,取出1个红球记3分.用ξ表示取出的2个球所得分数的和,写出ξ的分布列,并求ξ的数学期望Eξ.
100件产品,其中有30件次品,每次取出1件检验放回,连检两次,恰一次为次品的概率为( )
电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于( )