设函数。(1)求函数的最小正周期和单调递增区间;(2)求函数在区间上的最小值和最大值,并求出取最值时的值。
(本小题满分16分)已知函数满足,且当时,,当时,的最大值为.(1)求实数a的值;(2)设,函数,.若对任意,总存在,使,求实数b的取值范围.
(本小题满分16分)如图,在平面直角坐标系中,椭圆的左,右顶点分别为,若直线上有且仅有一个点,使得.(1)求椭圆的标准方程;(2)设圆的圆心在x轴上方,且圆经过椭圆两焦点.点,分别为椭圆和圆上的一动点.若时, 取得最大值为,求实数的值.
(本小题满分14分)如图,有一景区的平面图是一半圆形,其中AB长为2km,C、D两点在半圆弧上,满足BC=CD.设.(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长l最长,并求l的最大值.(2)若要在景区内种植鲜花,其中在和内种满鲜花,在扇形内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S最大.
如图,边长为2的正方形是圆柱的中截面,点为线段的中点,点为圆柱的下底面圆周上异于,的一个动点.(1)在圆柱的下底面上确定一定点,使得平面; (2)求证:平面平面.
(本小题满分14分)函数的部分图象如图所示.(1)求出及图中的值;(2)求在区间上的最大值和最小值.