计算:(2)已知函数,求它的定义域和值域。
(本小题满分12分)惠州市某县区共有甲、乙、丙三所高中的高三文科学生共有800人,各学校男、女生人数如下表:已知在三所高中的所有高三文科学生中随机抽取1人,抽到乙高中女生的概率为.(1)求表中的值;(2)惠州市第三次调研考试后,该县区决定从三所高中的所有高三文科学生中利用随机数表法抽取100人进行成绩统计分析,先将800人按001,002, ,800进行编号。如果从第8行第7列的数开始向右读,请你依次写出最先抽取的3个人的编号;(下面摘取了随机数表中第7行至第9行)8442 1753 3157 2455 0688 7704 7447 6721 7633 5026 8392 6301 5316 5916 9275 3862 9821 5071 7512 8673 5807 4439 1326 3321 1342 7864 1607 8252 0744 3815 0324 4299 7931(3)已知,,求丙高中学校中的女生比男生人数多的概率.
(本小题满分12分)已知向量.令,(1)求的最小正周期;(2)当时,求的最小值以及取得最小值时的值.
(本小题满分14分)已知函数,过点作曲线的两条切线,,切点分别为,. (1)当时,求函数的单调递增区间; (2)设,求函数的表达式; (3)在(2)的条件下,若对任意的正整数,在区间内,总存在个数使得不等式成立,求的最大值.
(本小题满分14分)已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.(1)求抛物线和椭圆的标准方程;(2)过点的直线交抛物线于两不同点,交轴于点,已知,,求的值;(3)直线交椭圆于两不同点,在轴的射影分别为,,若点满足,证明:点在椭圆上.
(本小题满分14分)已知数列的前项和,且.(1)求数列的通项公式;(2)令,是否存在,使得、、成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.