湖南省环保研究所对长沙市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻x的关系为,其中a是与气象有关的参数,且,若用每天的最大值作为当天的综合放射性污染指数,并记作.(Ⅰ)令,求t的取值范围;(Ⅱ)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。(1) 求证:CE⊥平面PAD;(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积
(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(1) 若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值;(11)在(1)的条件下,将等级系数为4的3件日用品记为x1, x2, x3,等级系数为5的2件日用品记为y1,y2,现从x1, x2, x3, y1, y2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
(本小题满分12分)已知等差数列{an}中,a1=1,a3=-3.(I)求数列{an}的通项公式;(II)若数列{an}的前k项和Sk=-35,求k的值.
设不等式 2 x - 1 < 1 的解集为 M . (I)求集合 M ; (II)若 a , b ∈ M ,试比较 a b + 1 与 a + b 的大小.
在直接坐标系 x O y 中,直线 l 的方程为 x - y + 4 = 0 ,曲线 C 的参数方程为 x = 3 cos a y = sin a . (I)已知在极坐标(与直角坐标系 x O y 取相同的长度单位,且以原点 O 为极点,以x轴正半轴为极轴)中,点 P 的极坐标为 ( 4 , π 2 ) ,判断点 P 与直线 l 的位置关系; (II)设点 Q 是曲线 C 上的一个动点,求它到直线 l 的距离的最小值.