在直角坐标系上取两个定点,再取两个动点且.(I)求直线与交点的轨迹的方程;(II)已知,设直线:与(I)中的轨迹交于、两点,直线、 的倾斜角分别为且,求证:直线过定点,并求该定点的坐标.
本小题满分12分如图,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=。(I)求证:A1B⊥B1C;(II)求二面角A1—B1C—B的大小。
(本小题满分12分)甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)甲校:
乙校:
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
(本小题满分10分)在△ABC中,a、b、c分别是角A、B、C的对边,,且.(1)求角A的大小;(2)求的取值区间。
(已知函数(常数)的图像过点、两点.(1)求的解析式;(2)若函数的图像与函数的图像关于直线对称,若不等式恒成立,求实数的取值范围;(3)若是函数图像上的点列,是正半轴上的点列,为坐标原点,是一系列正三角形,记它们的边长是,探求数列的通项公式,并说明理由.
(某园林公司计划在一块为圆心,(为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.(1)设, ,用表示弓形的面积;(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的(参考公式:扇形面积公式,表示扇形的弧长)