已知椭圆抛物线的焦点均在轴上,的中心和 的顶点均为坐标原点从每条曲线上取两个点,将其坐标记录于下表中:
(Ⅰ)求分别适合的方程的点的坐标;(Ⅱ)求的标准方程.
设数列的前项和为,且.(1)证明:数列是等比数列;(2)若数列满足,求数列的前项和为.
若a,b,c均为正数,且a+b+c=6,对任意x∈R恒成立,求m的取值范围.
已知直线l过点P(2,0),斜率为直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M,求:(1)|PM|; (2)|AB|.
已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量并有特征值λ2=-1及属于特征值-1的一个特征向量(1)求矩阵M.(2)求M5α.
设数列的前项和为,已知(n∈N*).(Ⅰ)求数列的通项公式;(Ⅱ)求证:当x>0时,(Ⅲ)令,数列的前项和为.利用(2)的结论证明:当n∈N*且n≥2时,.